Files
JJBB/Assets/Plugins/Best HTTP/Source/SecureProtocol/crypto/prng/drbg/CtrSP800Drbg.cs
2024-08-23 15:49:34 +08:00

471 lines
15 KiB
C#

#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
#pragma warning disable
using System;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Parameters;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities.Encoders;
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Prng.Drbg
{
/**
* A SP800-90A CTR DRBG.
*/
public class CtrSP800Drbg
: ISP80090Drbg
{
private static readonly long TDEA_RESEED_MAX = 1L << (32 - 1);
private static readonly long AES_RESEED_MAX = 1L << (48 - 1);
private static readonly int TDEA_MAX_BITS_REQUEST = 1 << (13 - 1);
private static readonly int AES_MAX_BITS_REQUEST = 1 << (19 - 1);
private readonly IEntropySource mEntropySource;
private readonly IBlockCipher mEngine;
private readonly int mKeySizeInBits;
private readonly int mSeedLength;
private readonly int mSecurityStrength;
// internal state
private byte[] mKey;
private byte[] mV;
private long mReseedCounter = 0;
private bool mIsTdea = false;
/**
* Construct a SP800-90A CTR DRBG.
* <p>
* Minimum entropy requirement is the security strength requested.
* </p>
* @param engine underlying block cipher to use to support DRBG
* @param keySizeInBits size of the key to use with the block cipher.
* @param securityStrength security strength required (in bits)
* @param entropySource source of entropy to use for seeding/reseeding.
* @param personalizationString personalization string to distinguish this DRBG (may be null).
* @param nonce nonce to further distinguish this DRBG (may be null).
*/
public CtrSP800Drbg(IBlockCipher engine, int keySizeInBits, int securityStrength, IEntropySource entropySource,
byte[] personalizationString, byte[] nonce)
{
if (securityStrength > 256)
throw new ArgumentException("Requested security strength is not supported by the derivation function");
if (GetMaxSecurityStrength(engine, keySizeInBits) < securityStrength)
throw new ArgumentException("Requested security strength is not supported by block cipher and key size");
if (entropySource.EntropySize < securityStrength)
throw new ArgumentException("Not enough entropy for security strength required");
mEntropySource = entropySource;
mEngine = engine;
mKeySizeInBits = keySizeInBits;
mSecurityStrength = securityStrength;
mSeedLength = keySizeInBits + engine.GetBlockSize() * 8;
mIsTdea = IsTdea(engine);
byte[] entropy = GetEntropy(); // Get_entropy_input
CTR_DRBG_Instantiate_algorithm(entropy, nonce, personalizationString);
}
private void CTR_DRBG_Instantiate_algorithm(byte[] entropy, byte[] nonce, byte[] personalisationString)
{
byte[] seedMaterial = Arrays.ConcatenateAll(entropy, nonce, personalisationString);
byte[] seed = Block_Cipher_df(seedMaterial, mSeedLength);
int outlen = mEngine.GetBlockSize();
mKey = new byte[(mKeySizeInBits + 7) / 8];
mV = new byte[outlen];
// mKey & mV are modified by this call
CTR_DRBG_Update(seed, mKey, mV);
mReseedCounter = 1;
}
private void CTR_DRBG_Update(byte[] seed, byte[] key, byte[] v)
{
byte[] temp = new byte[seed.Length];
byte[] outputBlock = new byte[mEngine.GetBlockSize()];
int i = 0;
int outLen = mEngine.GetBlockSize();
mEngine.Init(true, new KeyParameter(ExpandKey(key)));
while (i*outLen < seed.Length)
{
AddOneTo(v);
mEngine.ProcessBlock(v, 0, outputBlock, 0);
int bytesToCopy = ((temp.Length - i * outLen) > outLen)
? outLen : (temp.Length - i * outLen);
Array.Copy(outputBlock, 0, temp, i * outLen, bytesToCopy);
++i;
}
XOR(temp, seed, temp, 0);
Array.Copy(temp, 0, key, 0, key.Length);
Array.Copy(temp, key.Length, v, 0, v.Length);
}
private void CTR_DRBG_Reseed_algorithm(byte[] additionalInput)
{
byte[] seedMaterial = Arrays.Concatenate(GetEntropy(), additionalInput);
seedMaterial = Block_Cipher_df(seedMaterial, mSeedLength);
CTR_DRBG_Update(seedMaterial, mKey, mV);
mReseedCounter = 1;
}
private void XOR(byte[] output, byte[] a, byte[] b, int bOff)
{
for (int i = 0; i < output.Length; i++)
{
output[i] = (byte)(a[i] ^ b[bOff + i]);
}
}
private void AddOneTo(byte[] longer)
{
uint carry = 1;
int i = longer.Length;
while (--i >= 0)
{
carry += longer[i];
longer[i] = (byte)carry;
carry >>= 8;
}
}
private byte[] GetEntropy()
{
byte[] entropy = mEntropySource.GetEntropy();
if (entropy.Length < (mSecurityStrength + 7) / 8)
throw new InvalidOperationException("Insufficient entropy provided by entropy source");
return entropy;
}
// -- Internal state migration ---
private static readonly byte[] K_BITS = Hex.DecodeStrict("000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F");
// 1. If (number_of_bits_to_return > max_number_of_bits), then return an
// ERROR_FLAG.
// 2. L = len (input_string)/8.
// 3. N = number_of_bits_to_return/8.
// Comment: L is the bitstring represention of
// the integer resulting from len (input_string)/8.
// L shall be represented as a 32-bit integer.
//
// Comment : N is the bitstring represention of
// the integer resulting from
// number_of_bits_to_return/8. N shall be
// represented as a 32-bit integer.
//
// 4. S = L || N || input_string || 0x80.
// 5. While (len (S) mod outlen)
// Comment : Pad S with zeros, if necessary.
// 0, S = S || 0x00.
//
// Comment : Compute the starting value.
// 6. temp = the Null string.
// 7. i = 0.
// 8. K = Leftmost keylen bits of 0x00010203...1D1E1F.
// 9. While len (temp) < keylen + outlen, do
//
// IV = i || 0outlen - len (i).
//
// 9.1
//
// temp = temp || BCC (K, (IV || S)).
//
// 9.2
//
// i = i + 1.
//
// 9.3
//
// Comment : i shall be represented as a 32-bit
// integer, i.e., len (i) = 32.
//
// Comment: The 32-bit integer represenation of
// i is padded with zeros to outlen bits.
//
// Comment: Compute the requested number of
// bits.
//
// 10. K = Leftmost keylen bits of temp.
//
// 11. X = Next outlen bits of temp.
//
// 12. temp = the Null string.
//
// 13. While len (temp) < number_of_bits_to_return, do
//
// 13.1 X = Block_Encrypt (K, X).
//
// 13.2 temp = temp || X.
//
// 14. requested_bits = Leftmost number_of_bits_to_return of temp.
//
// 15. Return SUCCESS and requested_bits.
private byte[] Block_Cipher_df(byte[] inputString, int bitLength)
{
int outLen = mEngine.GetBlockSize();
int L = inputString.Length; // already in bytes
int N = bitLength / 8;
// 4 S = L || N || inputstring || 0x80
int sLen = 4 + 4 + L + 1;
int blockLen = ((sLen + outLen - 1) / outLen) * outLen;
byte[] S = new byte[blockLen];
copyIntToByteArray(S, L, 0);
copyIntToByteArray(S, N, 4);
Array.Copy(inputString, 0, S, 8, L);
S[8 + L] = (byte)0x80;
// S already padded with zeros
byte[] temp = new byte[mKeySizeInBits / 8 + outLen];
byte[] bccOut = new byte[outLen];
byte[] IV = new byte[outLen];
int i = 0;
byte[] K = new byte[mKeySizeInBits / 8];
Array.Copy(K_BITS, 0, K, 0, K.Length);
while (i*outLen*8 < mKeySizeInBits + outLen *8)
{
copyIntToByteArray(IV, i, 0);
BCC(bccOut, K, IV, S);
int bytesToCopy = ((temp.Length - i * outLen) > outLen)
? outLen
: (temp.Length - i * outLen);
Array.Copy(bccOut, 0, temp, i * outLen, bytesToCopy);
++i;
}
byte[] X = new byte[outLen];
Array.Copy(temp, 0, K, 0, K.Length);
Array.Copy(temp, K.Length, X, 0, X.Length);
temp = new byte[bitLength / 2];
i = 0;
mEngine.Init(true, new KeyParameter(ExpandKey(K)));
while (i * outLen < temp.Length)
{
mEngine.ProcessBlock(X, 0, X, 0);
int bytesToCopy = ((temp.Length - i * outLen) > outLen)
? outLen
: (temp.Length - i * outLen);
Array.Copy(X, 0, temp, i * outLen, bytesToCopy);
i++;
}
return temp;
}
/*
* 1. chaining_value = 0^outlen
* . Comment: Set the first chaining value to outlen zeros.
* 2. n = len (data)/outlen.
* 3. Starting with the leftmost bits of data, split the data into n blocks of outlen bits
* each, forming block(1) to block(n).
* 4. For i = 1 to n do
* 4.1 input_block = chaining_value ^ block(i) .
* 4.2 chaining_value = Block_Encrypt (Key, input_block).
* 5. output_block = chaining_value.
* 6. Return output_block.
*/
private void BCC(byte[] bccOut, byte[] k, byte[] iV, byte[] data)
{
int outlen = mEngine.GetBlockSize();
byte[] chainingValue = new byte[outlen]; // initial values = 0
int n = data.Length / outlen;
byte[] inputBlock = new byte[outlen];
mEngine.Init(true, new KeyParameter(ExpandKey(k)));
mEngine.ProcessBlock(iV, 0, chainingValue, 0);
for (int i = 0; i < n; i++)
{
XOR(inputBlock, chainingValue, data, i*outlen);
mEngine.ProcessBlock(inputBlock, 0, chainingValue, 0);
}
Array.Copy(chainingValue, 0, bccOut, 0, bccOut.Length);
}
private void copyIntToByteArray(byte[] buf, int value, int offSet)
{
buf[offSet + 0] = ((byte)(value >> 24));
buf[offSet + 1] = ((byte)(value >> 16));
buf[offSet + 2] = ((byte)(value >> 8));
buf[offSet + 3] = ((byte)(value));
}
/**
* Return the block size (in bits) of the DRBG.
*
* @return the number of bits produced on each internal round of the DRBG.
*/
public int BlockSize
{
get { return mV.Length * 8; }
}
/**
* Populate a passed in array with random data.
*
* @param output output array for generated bits.
* @param additionalInput additional input to be added to the DRBG in this step.
* @param predictionResistant true if a reseed should be forced, false otherwise.
*
* @return number of bits generated, -1 if a reseed required.
*/
public int Generate(byte[] output, byte[] additionalInput, bool predictionResistant)
{
if (mIsTdea)
{
if (mReseedCounter > TDEA_RESEED_MAX)
return -1;
if (DrbgUtilities.IsTooLarge(output, TDEA_MAX_BITS_REQUEST / 8))
throw new ArgumentException("Number of bits per request limited to " + TDEA_MAX_BITS_REQUEST, "output");
}
else
{
if (mReseedCounter > AES_RESEED_MAX)
return -1;
if (DrbgUtilities.IsTooLarge(output, AES_MAX_BITS_REQUEST / 8))
throw new ArgumentException("Number of bits per request limited to " + AES_MAX_BITS_REQUEST, "output");
}
if (predictionResistant)
{
CTR_DRBG_Reseed_algorithm(additionalInput);
additionalInput = null;
}
if (additionalInput != null)
{
additionalInput = Block_Cipher_df(additionalInput, mSeedLength);
CTR_DRBG_Update(additionalInput, mKey, mV);
}
else
{
additionalInput = new byte[mSeedLength];
}
byte[] tmp = new byte[mV.Length];
mEngine.Init(true, new KeyParameter(ExpandKey(mKey)));
for (int i = 0; i <= output.Length / tmp.Length; i++)
{
int bytesToCopy = ((output.Length - i * tmp.Length) > tmp.Length)
? tmp.Length
: (output.Length - i * mV.Length);
if (bytesToCopy != 0)
{
AddOneTo(mV);
mEngine.ProcessBlock(mV, 0, tmp, 0);
Array.Copy(tmp, 0, output, i * tmp.Length, bytesToCopy);
}
}
CTR_DRBG_Update(additionalInput, mKey, mV);
mReseedCounter++;
return output.Length * 8;
}
/**
* Reseed the DRBG.
*
* @param additionalInput additional input to be added to the DRBG in this step.
*/
public void Reseed(byte[] additionalInput)
{
CTR_DRBG_Reseed_algorithm(additionalInput);
}
private bool IsTdea(IBlockCipher cipher)
{
return cipher.AlgorithmName.Equals("DESede") || cipher.AlgorithmName.Equals("TDEA");
}
private int GetMaxSecurityStrength(IBlockCipher cipher, int keySizeInBits)
{
if (IsTdea(cipher) && keySizeInBits == 168)
{
return 112;
}
if (cipher.AlgorithmName.Equals("AES"))
{
return keySizeInBits;
}
return -1;
}
private byte[] ExpandKey(byte[] key)
{
if (mIsTdea)
{
// expand key to 192 bits.
byte[] tmp = new byte[24];
PadKey(key, 0, tmp, 0);
PadKey(key, 7, tmp, 8);
PadKey(key, 14, tmp, 16);
return tmp;
}
else
{
return key;
}
}
/**
* Pad out a key for TDEA, setting odd parity for each byte.
*
* @param keyMaster
* @param keyOff
* @param tmp
* @param tmpOff
*/
private void PadKey(byte[] keyMaster, int keyOff, byte[] tmp, int tmpOff)
{
tmp[tmpOff + 0] = (byte)(keyMaster[keyOff + 0] & 0xfe);
tmp[tmpOff + 1] = (byte)((keyMaster[keyOff + 0] << 7) | ((keyMaster[keyOff + 1] & 0xfc) >> 1));
tmp[tmpOff + 2] = (byte)((keyMaster[keyOff + 1] << 6) | ((keyMaster[keyOff + 2] & 0xf8) >> 2));
tmp[tmpOff + 3] = (byte)((keyMaster[keyOff + 2] << 5) | ((keyMaster[keyOff + 3] & 0xf0) >> 3));
tmp[tmpOff + 4] = (byte)((keyMaster[keyOff + 3] << 4) | ((keyMaster[keyOff + 4] & 0xe0) >> 4));
tmp[tmpOff + 5] = (byte)((keyMaster[keyOff + 4] << 3) | ((keyMaster[keyOff + 5] & 0xc0) >> 5));
tmp[tmpOff + 6] = (byte)((keyMaster[keyOff + 5] << 2) | ((keyMaster[keyOff + 6] & 0x80) >> 6));
tmp[tmpOff + 7] = (byte)(keyMaster[keyOff + 6] << 1);
DesParameters.SetOddParity(tmp, tmpOff, 8);
}
}
}
#pragma warning restore
#endif