161 lines
5.4 KiB
C#
161 lines
5.4 KiB
C#
|
#if !BESTHTTP_DISABLE_ALTERNATE_SSL && (!UNITY_WEBGL || UNITY_EDITOR)
|
||
|
#pragma warning disable
|
||
|
using System;
|
||
|
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Math.EC.Multiplier;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Security;
|
||
|
using BestHTTP.SecureProtocol.Org.BouncyCastle.Utilities;
|
||
|
|
||
|
namespace BestHTTP.SecureProtocol.Org.BouncyCastle.Crypto.Generators
|
||
|
{
|
||
|
internal class DHParametersHelper
|
||
|
{
|
||
|
private static readonly BigInteger Six = BigInteger.ValueOf(6);
|
||
|
|
||
|
private static readonly int[][] primeLists = BigInteger.primeLists;
|
||
|
private static readonly int[] primeProducts = BigInteger.primeProducts;
|
||
|
private static readonly BigInteger[] BigPrimeProducts = ConstructBigPrimeProducts(primeProducts);
|
||
|
|
||
|
private static BigInteger[] ConstructBigPrimeProducts(int[] primeProducts)
|
||
|
{
|
||
|
BigInteger[] bpp = new BigInteger[primeProducts.Length];
|
||
|
for (int i = 0; i < bpp.Length; ++i)
|
||
|
{
|
||
|
bpp[i] = BigInteger.ValueOf(primeProducts[i]);
|
||
|
}
|
||
|
return bpp;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Finds a pair of prime BigInteger's {p, q: p = 2q + 1}
|
||
|
*
|
||
|
* (see: Handbook of Applied Cryptography 4.86)
|
||
|
*/
|
||
|
internal static BigInteger[] GenerateSafePrimes(int size, int certainty, SecureRandom random)
|
||
|
{
|
||
|
BigInteger p, q;
|
||
|
int qLength = size - 1;
|
||
|
int minWeight = size >> 2;
|
||
|
|
||
|
if (size <= 32)
|
||
|
{
|
||
|
for (;;)
|
||
|
{
|
||
|
q = new BigInteger(qLength, 2, random);
|
||
|
|
||
|
p = q.ShiftLeft(1).Add(BigInteger.One);
|
||
|
|
||
|
if (!p.IsProbablePrime(certainty, true))
|
||
|
continue;
|
||
|
|
||
|
if (certainty > 2 && !q.IsProbablePrime(certainty, true))
|
||
|
continue;
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
// Note: Modified from Java version for speed
|
||
|
for (;;)
|
||
|
{
|
||
|
q = new BigInteger(qLength, 0, random);
|
||
|
|
||
|
retry:
|
||
|
for (int i = 0; i < primeLists.Length; ++i)
|
||
|
{
|
||
|
int test = q.Remainder(BigPrimeProducts[i]).IntValue;
|
||
|
|
||
|
if (i == 0)
|
||
|
{
|
||
|
int rem3 = test % 3;
|
||
|
if (rem3 != 2)
|
||
|
{
|
||
|
int diff = 2 * rem3 + 2;
|
||
|
q = q.Add(BigInteger.ValueOf(diff));
|
||
|
test = (test + diff) % primeProducts[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
int[] primeList = primeLists[i];
|
||
|
for (int j = 0; j < primeList.Length; ++j)
|
||
|
{
|
||
|
int prime = primeList[j];
|
||
|
int qRem = test % prime;
|
||
|
if (qRem == 0 || qRem == (prime >> 1))
|
||
|
{
|
||
|
q = q.Add(Six);
|
||
|
goto retry;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (q.BitLength != qLength)
|
||
|
continue;
|
||
|
|
||
|
if (!q.RabinMillerTest(2, random, true))
|
||
|
continue;
|
||
|
|
||
|
p = q.ShiftLeft(1).Add(BigInteger.One);
|
||
|
|
||
|
if (!p.RabinMillerTest(certainty, random, true))
|
||
|
continue;
|
||
|
|
||
|
if (certainty > 2 && !q.RabinMillerTest(certainty - 2, random, true))
|
||
|
continue;
|
||
|
|
||
|
/*
|
||
|
* Require a minimum weight of the NAF representation, since low-weight primes may be
|
||
|
* weak against a version of the number-field-sieve for the discrete-logarithm-problem.
|
||
|
*
|
||
|
* See "The number field sieve for integers of low weight", Oliver Schirokauer.
|
||
|
*/
|
||
|
if (WNafUtilities.GetNafWeight(p) < minWeight)
|
||
|
continue;
|
||
|
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return new BigInteger[] { p, q };
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Select a high order element of the multiplicative group Zp*
|
||
|
*
|
||
|
* p and q must be s.t. p = 2*q + 1, where p and q are prime (see generateSafePrimes)
|
||
|
*/
|
||
|
internal static BigInteger SelectGenerator(BigInteger p, BigInteger q, SecureRandom random)
|
||
|
{
|
||
|
BigInteger pMinusTwo = p.Subtract(BigInteger.Two);
|
||
|
BigInteger g;
|
||
|
|
||
|
/*
|
||
|
* (see: Handbook of Applied Cryptography 4.80)
|
||
|
*/
|
||
|
// do
|
||
|
// {
|
||
|
// g = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
|
||
|
// }
|
||
|
// while (g.ModPow(BigInteger.Two, p).Equals(BigInteger.One)
|
||
|
// || g.ModPow(q, p).Equals(BigInteger.One));
|
||
|
|
||
|
/*
|
||
|
* RFC 2631 2.2.1.2 (and see: Handbook of Applied Cryptography 4.81)
|
||
|
*/
|
||
|
do
|
||
|
{
|
||
|
BigInteger h = BigIntegers.CreateRandomInRange(BigInteger.Two, pMinusTwo, random);
|
||
|
|
||
|
g = h.ModPow(BigInteger.Two, p);
|
||
|
}
|
||
|
while (g.Equals(BigInteger.One));
|
||
|
|
||
|
return g;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#pragma warning restore
|
||
|
#endif
|